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cells. Establishment of mammary gland al-
veolar morphology and expression of milk-
specific genes are absolutely dependent on
deposition of a laminin-rich ECM (4). In
addition, involution of the gland, which
follows expression of the lactational phe-
notype, is characterized by degradation of
this ECM by metalloproteinases (5) and is
accompanied by apoptosis (6, 7). Cell at-
tachment, mediated by integrin-ECM in-
teractions, can suppress apoptosis in short-
term two-dimensional cultures for up to 30
hours (8).

To determine whether ECM regulates
apoptosis, we compared the response of
CID-9 mammary epithelial cells (MECs)
plated directly on tissue culture plastic, in
the absence of serum, with those plated on
an exogenous basement membrane ECM.
Unlike plastic, fibronectin, or type I colla-
gen, this Englebreth-Holm-Swarm (EHS)
matrix directs the cells to differentiate, as
manifested by the formation of three-di-
mensional alveolar structures and expres-
sion of milk proteins (9). After 4 to 5 days
on plastic, despite strong adhesion and
spreading, the cells began to display char-
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Suppression of ICE and Apoptosis in Mammary
Epithelial Cells by Extracellular Matrix
Nancy Boudreau,* Carolyn J. Sympson, Zena Werb,

Mina J. Bissell

Apoptosis (programmed cell death) plays a major role in development and tissue regen-
eration. Basement membrane extracellular matrix (ECM), but not fibronectin or collagen,
was shown to suppress apoptosis of mammary epithelial cells in tissue culture and in vivo.
Apoptosis was induced by antibodies to I?1 integrins or by overexpression of stromelysin-
1, which degrades ECM. Expression of interleukin-1 p converting enzyme (ICE) correlated
with the loss of ECM, and inhibitors of ICE activity prevented apoptosis. These results
suggest that ECM regulates apoptosis in mammary epithelial cells through an integrin-
dependent negative regulation of ICE expression.
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acteristics of apoptosis including nucleoso-
mal DNA laddering (Fig. 1A), expression of
the apoptosis-associated gene SGP-2 (7)
(Fig. 1B), and nuclear condensation (Fig.
1C). In situ analysis revealed that fragment-
ed DNA was present in 10 to 20% of cells
(Fig. iD). In contrast, the cells plated on
ECM did not display these apoptotic fea-
tures for up to 10 days (Fig. 1, A, B, and E).
Similar results were observed when the
ECM was pretreated with ammonium sul-
fate to remove growth factors (10). To elim-
inate the possibility that suppression of ap-
optosis was due to residual growth factors in
the EHS matrix, we plated MECs on porous

filters (11), whereupon the cells deposited
their own basement membrane. This endog-
enous basement membrane also suppressed
apoptosis in long-term cultures (Fig. iF).

To demonstrate that ECM-derived sig-
nals suppress apoptosis, we disrupted cell-
ECM interactions by addition of an anti-
body to PI integrin (12). Two days after
addition of this antibody, a substantial in-
crease in nucleosomal DNA laddering was
observed, even in cells still adherent to
their endogenous matrices (Fig. 1G). MECs
that were attached to culture dishes coated
with either fibronectin or type I collagen
displayed a degree of apoptosis similar to

Fig. 1. Characteristics of AB
apoptosis in CID-9 cells. (A)
Electrophoretic analysis of
total DNA (20 Kug) from cells
cultured for 7 days on plastic -
(P) or EHS basement mem-
brane (E). (B) RNA blot hy-
bridized with a probe that _
detects the 2.4-kb mRNA P E P E
for the apoptosis-associat-
ed gene SGP-2. (C) Acridine
orange staining of cultured
cells on plastic (arrow points
to apoptotic cells). Scale
bar, 58 pum. In situ analysis
of DNA fragmentation in in-
dividual cells cultured on
plastic (D) or EHS basement
membrane (E) detected by
fluorescein isothiocyanate- F H
digoxigenin nucleotide la-
beling of 3'-OH DNA ends
(Apoptag, Oncor). Scale
bar, 90 pKm. Electrophoretic
analysis of total DNA (20 pKg)
from CID-9 cells (F) cultured
on EHS (E) or allowed to E BM Control Ant P Col FN
form endogenous basement
membrane (BM) for 5 days,
(G) treated with normal rabbit serum (control) or anti-,B1 integrin for 2 days, or (H) cultured on plastic (P),
type collagen (200 pug/ml) (Col), or fibronectin (50 pug/ml) (FN) for 5 days.

MECs cultured on plastic (Fig. 1H), indi-
cating that suppression of apoptosis re-
quired an intact basement membrane ECM.

To determine whether proteolytic de-
struction of an existing basement mem-
brane could induce apoptosis, we estab-
lished a culture model of mammary gland
involution. CID-9 cells were cotransfected
with an inducible expression vector encod-
ing a stromelysin-1 autoactivating mutant
under control of the Rous sarcoma virus
(RSV) promoter linked to a lac repressor-
binding intron and with a vector encoding
the lac repressor-binding protein (13).
MECs were cultured on filters for 3 days,
and stromelysin-1 expression was induced
by addition of 5 mM isopropyl-3-D-thioga-
lactopyranoside (IPTG). Within 72 hours,
there was a substantial increase in apopto-
sis-associated DNA laddering in the cells
expressing stromelysin-1 but not in the un-
induced controls (Fig. 2A). Apoptosis de-
pended on proteolytic activity of the
stromelysin-1 because it was inhibited by
the addition of the metalloproteinase inhib-
itor GM6001 (14).
We then examined apoptosis in vivo in

transgenic mice expressing the stromely-
sin-1 gene under control of the whey acidic
milk protein promoter (15), which is acti-
vated in mid- to late pregnancy. DNA anal-
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Fig. 2. Apoptosis in cells overexpressing stromelysin-1. (A) Electrophoretic analysis of total DNA (20 pug)
from control (C) and IPTG-induced cells (I) after 72 hours. Corresponding RNA blot (20 pug per lane)
hybridization with a probe that detects a 1.9-kb stromelysin-1 mRNA. In situ analysis of DNA from
mammary gland of normal mice in midpregnancy (B) and in transgenics expressing stromelysin-1 (14) (C).
Note the increase in the number of epithelial cells undergoing apoptosis and the collapsed alveoli in the
transgenics compared to normal mice. Scale bar, 33 pgm.

Fig. 3. Inhibition of apoptosis in CID-9 cells. (A)
Electrophoretic analysis of DNA (20 pKg) from
CID-9 untransfected control cells (P) or cells trans-
fected with crmA and cultured on plastic for 7
days. (B) Quantitation of fragmented DNA from
untransfected CID-9 cells (control), cells trans-
fected with crmA, or cells treated with 0.5, 3.5, or
5.0 K.M BACMK.
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ysis revealed that unlike the MECs in nor-
mal animals (Fig. 2B), at least 10 to 15% of
MECs in the transgenics were apoptotic in
midpregnancy (Fig. 2C). Thus, degradation
of ECM by stromelysin-1 results in apopto-
sis both in culture and in vivo.

To determine whether apoptosis of
MECs was mediated by ICE, a known in-
ducer of apoptosis in mammalian cells, we
transfected CID-9 cells with a vector en-
coding crmA, a viral gene product that spe-
cifically inhibits the enzymatic activity of
ICE (16). The crmA transfectants showed
an 80% reduction in apoptosis-associated
DNA laddering compared to control cells
(Fig. 3, A and B). We also treated cells
plated on plastic with BACMK, an inhibi-
tor directed at the active site of ICE (17).
BACMK reduced DNA laddering in CID-9
cells by up to 80% after 5 days as compared
to uninhibited controls (Fig. 3B). These
results indicate that in the absence of ECM,
apoptosis of MECs occurs largely through
the activity of ICE.
We also investigated the expression of

ICE in the mammary gland in vivo. The
1.6-kb ICE mRNA (18) was not expressed
in the lactating gland but was induced dur-
ing involution (Fig. 4A), when apoptosis
occurs in this tissue (7). To determine
whether the regulation of ICE expression
was directly related to the presence of ECM,
we examined ICE mRNA expression in
CID-9 cells. CID-9 cells cultured on plastic
contained large amounts of ICE mRNA
and the 45-kD ICE precursor protein and
enzymatically active 20-kD subunit (19),
whereas those plated on ECM contained
little or no ICE mRNA or protein (Fig. 4, B
and C).
We conclude that three-dimensional

ECM, acting through integrin receptors,
not only directs committed MECs to es-

L 2I 4I 8I
A C

w

E p E P

0 _0

_4 20 kD

Fig. 4. ICE mRNA and protein expression in mam-
mary epithelium. (A) RNA blot (20 pug per lane)
hybridized with a probe that detects a 1.6-kb ICE
mRNA in mammary tissue from normal mice lac-
tating for 9 days (L) or after involution for 2, 4, and
8 days (21, 41, 81). (B) RNA blot for ICE mRNA in
CID-9 cells after 5 days of culture on ECM (E) or

tissue culture plastic (P). (C) Immunoblot analysis
of ICE protein in lysates from corresponding cells
with a polyclonal antibody that detects the 45-kD
precursor, the active 20-kD subunit, and process-
ing intermediates (19).

tablish and maintain the differentiated
state but also suppresses the expression of
ICE and prevents apoptosis. Consequent-
ly, the proteolytic degradation of ECM
such as occurs during mammary gland in-
volution leads to the loss of the differen-
tiated state, induction of ICE expression
and activity, and ultimately apoptotic cell
death both in vivo and in culture. Al-
though our data cannot distinguish be-
tween ICE and as yet unidentified ICE
gene family members that might also be
blocked by active site-directed inhibitors
or recognized by antibodies to ICE, we
show that survival requires not only adhe-
sion, but also specialized P integrin-me-
diated signals derived from specific ECM
components. The nature of these signals
and their ability to modulate the expres-
sion of ICE remain to be elucidated, as do
the in vivo substrates for ICE or related
enzymes and the mechanism or mecha-
nisms by which they influence cell death.
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